The new Sentinel-1 based global flood monitoring product of the Copernicus Emergency Management Service

Peter Salamon 9 June 2021

Emergency Management

ecd

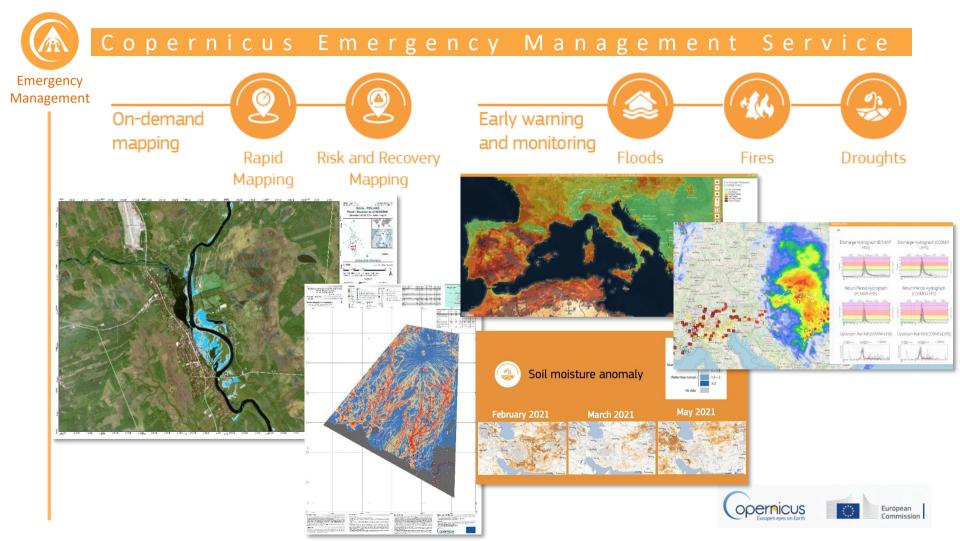
LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

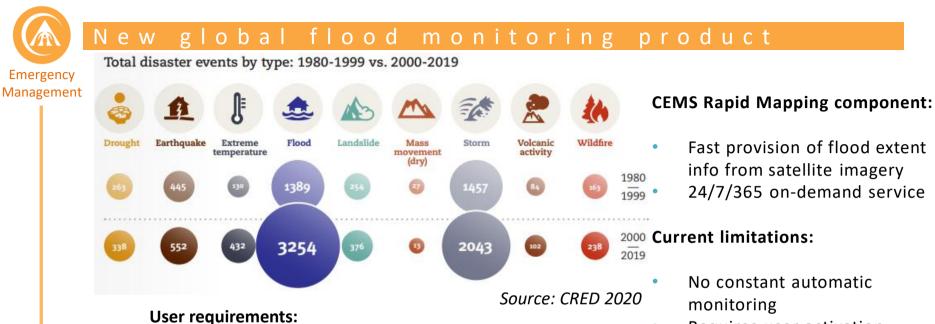
LIST 🥏

TECHNISCHE UNIVERSITÄT WIEN Vienna |Austria

Copernicus

Emergency Management opernicus **EU's Earth Observation Programme** Europe's eyes on Earth Satellites: Sentinels & In-situ **Contributing Missions** measurements Marine Monitoring Atmosphere Monitoring Climate Change Security ... added value products


Operational since 2012


•

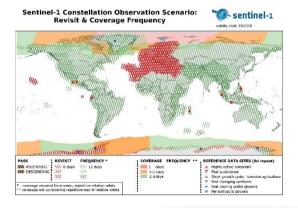
- Managed directly by the European Commission via the JRC
- Provides disaster management information based on space data combined with other information
- Supports all phases of the disaster risk management cycle (during, before, after):
 - Preparedness: forecasts and early warnings
 - Emergency Response: increase situational awareness through rapid maps and monitoring of an event
 - Recovery: risk assessment for specific hazards and post-disaster recovery maps

Timeliness: better response planning

٠

- Frequent updates/continuous monitoring: adapt measures depending on the evolution of the flood
- **Resolution**: needs to be adequate for impact assessment
- Historic data: improved prevention planning
- Access: as diverse as possible to account for all user needs

- Requires user activation
- Activation requests usually arrive late (missing flood peak)
- Currently not possible to map all floods (resource limitations)


Emergency Management

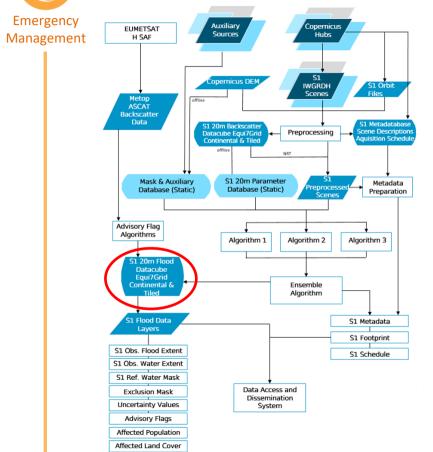
Sentinel-1 based:

- SAR enables **all day and all weather** flood monitoring
- High spatial resolution of 20 m
- High revisit frequency: Europe ~ 1 3 days World
 ~ 3 14 days

Automatic:

- High timeliness of the product less than
 8 hours between sensing and product delivery
- Continuous monitoring for large areas

Source: ESA

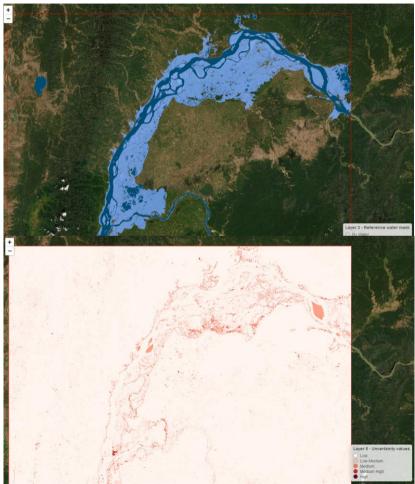


Emergency Management		Algorithm 1 LIST	Algorithm 2	Algorithm 3	Ensemble Algorithm (Algorithm 4) "consensus map" Combine results of Algorithms 1-3 into a single product Pixel based classification based on number of algorithms detecting a flood based on a majority decision [flood: value >= 2 no flood: value < 2]
	Characteristics	Hierarchical split-based approach enabling re- calibration of parameters in NRT	Fuzzy logic-based approach enabling a post classification and region growing taking advantage of topography-derived indices in addition to SAR backscatter	Exploiting per-pixel full Sentinel-1 signal history in data cube (backscatter probability distribution);	
	Input remote sensing data	Pair of SAR intensity images acquired from same orbit (any sensor) and model parameters derived from historical time series	Single-temporal SAR intensity data	Single SAR acquisition and model parameters derived from historical time series	
	Auxiliary data	HAND index map, exclusion layer, reference water layer, water and flood extent map computed at previous time step	HAND index exclusion map, reference water extent, DEM, optional: low backscatter exclusion mask based on S-1 time- series data	HAND index, exclusion mask, reference water map for generating the fresh flooded areas	
	Exploitation of time series of SAR obs.	Yes (short-term)	No	Yes (long-term)	

RT processing chain and timeliness

 \triangleright

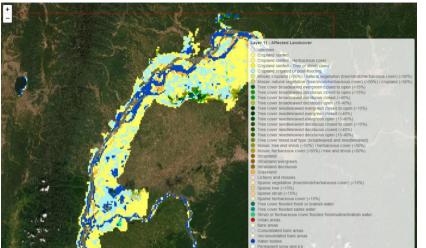
- ~ 12 auxiliary datasets required to be pre-processed to serve as input
- ~1000 S1IWGRDH scenes to be processed per day
- Data cube principle applied (see talk from Bauer-Marschallinger!)
- > 11 output layers will be produced
- Product timeliness of less than 8 hours!


Emergency

CEMS – automatic global flood monitoring

Management

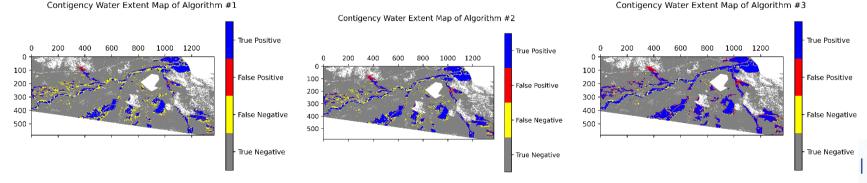
Products:


- Observed flood extent
- Reference water mask
 - Seasonal/permanent
 - based on historical Sentinel-1 time-series
- Ensemble uncertainty
- Advisory flags (snow, ice, frost, dry soil, wind)
- Exclusion layer (urban, dense vegetation, radar shadows, low backscatter)

Emergency Management

Products:

- Impact information
 - Landuse (GlobCover)
 - Population (Global Human Settlement Layer)
- Sentinel 1 metadata footprint schedule



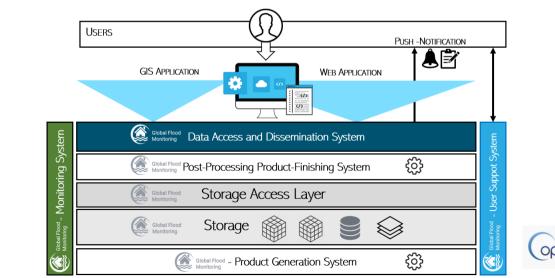
The Validation is carried out globally Management

Emergency

- Flooded areas are in general **regions with a very small area** in comparison to the earths land surface - Uniform random sampling is not possible; therefore, a subset must be chosen.
- **Stratified random sampling** reduces the amount of sample points needed and increases the confidence level of the validation.
- Validation datasets from different sources (e.g. Global Surface Water Explorer, etc.)

Emergency Management

Product access:


Free and open

API

- EFAS & GloFAS web interface
- Web services (WMS)

Planned implementation timeline:

- Start: November 2020
- Operational: September 2021

