

AI4SAR – project results

EODC: Alena Dostalova, Senmao Cao, Christian Briese JR: Karlheinz Gutjahr, Sead Mustafic, Katharina Hofer-Schmitz, Ana Gregorac TUW: Anice Jahanjoo, Maximilian Thiessen, Thomas Gärtner Airbus: Wolfgang Koppe, Tatjana Bürgmann, Anna-Lena Erdmann

Project objectives Develop an advanced preprocessing of SAR data based on AI to reduce the speckle effect. Concept utilisation to filter the complex-value SAR data for advanced interferometry.

Develop sub-pixel SAR-tooptical matching techniques based on AI resp. ML methods. To **demonstrate** the usability and to **validate** the products via UCs:

UC validators

eodc 1. **Data Cube ingestion** to facilitate distribution of the data.

2. Forest monitoring to
 demonstrate the novel SAR pre-processing.

JOANNEUM bas

3. Deformation monitoring

based on advanced phase and coherence estimation.

CARBUS DEFENCE & SPACE 4. **GCP transfer** from SAR to optical images.

UC validators

eodc 1. Data Cube ingestion to facilitate distribution of the data.

2. Forest monitoring to Messarch M demonstrate the novel SAR pre-processing.

3. Deformation monitoring

based on advanced phase and coherence estimation.

4. **GCP transfer** from SAR to optical images.

Advanced SAR pre-processing

- SAR images contain speckle: arises from local constructive or descructive interference -> homogenous areas appear "noisy"
- Many methods for reducing speckle – some can lead to oversmoothing/blurring the image
- Goal: develop AI based speckle filter for SAR backscatter images and publish this dataset

Applied Lee filter (speckle filter based on local statistics)

Advanced SAR pre-processing

 U-Net Neural Network adaptions for SAR despeckling

Speckle filter

- Learn speckle noise
- U-NET depth

Earth Observation Data Centre

- Loss function
- U-NET n (more input images)
- Improve training
 - Select tiles using additional thresholds
 - Include LULC map
- Train VV and VH separately

Sentinel-1, 02/12/2023, VV polarization

Dataset publication

STAC: SpatioTemporal Asset Catalog:

> STAC is a specification to describe geospatial raster data using JSON

STAC

SpatioTemporal Asset Catalog

- Focus on search and discovery
- Physosophy of STAC: simple, yet flexible and extensible

Dataset publication

- STAC collection: AI4SAR_SIG0¹:
 - AOI: Eastern Austria, year 2023
- Exploring options:
 - Search and download
 - Importing to QGIS without download by copying the item URL
 - Jupyter Notebook showing how to access/load/plot dataset²

fig1 = plt.figure(figsize=(18, 6)) #fig1.suptitle('AI4SAR Sigmo0 WV', fontsize=16) nodata = -9999	
for i in range(3):	
<pre>img = sig0_ds.VV[i,:,:].to_numpy() name = q_items[i].id</pre>	
<pre>gray_img = scale_image(img, nodata, vmin=-170, vmax=20)</pre>	
<pre>ax = fig1.add_subplot(1, 3, i+1) ax.set_title(name) ax.imshow(gray_img, cmap='gray')</pre>	
plt.tight_layout()	
SGO 202304181050210.D124 EU020M E051N01513 STAINWGRDH SIGO 202305121050211.D124 EU020M E051N01513 STAINWGRDH	960 202306171050213 D124 EU020M E051N015T3 S1AWGRDH
o -	Q Data Source Manager — Raster — — — X
and the second	Browser Source Type
o-	Vector File • Protocol: HTTP(S), doud, etc.
300-	Raster Protocol
4200	Mesh Type HTTP/HTTPS/FTP •
Really and a Really of the	URI E048N012T3/SIG0_20231227T165056VH_A146_E048N012T3_EU020M_V1M1R2_S1AIWGRDH_TUWIEN.tif
2000	Authentication Delimited
0 2000 2000 9000 0000 0 2000 2000 2000	Text Configurations Basic Choose or create an authentication configuration
	GeoPackage No Authentication • 7 • •
	GPS
	Spatialite
	PostgreSQL
	∭ MS SQL Server
	Cracle
	Virtual Layer

¹<u>https://radiantearth.github.io/stac-browser/#/external/dev.stac.eodc.eu/api/v1/collections/AI4SAR_SIG0?.language=en</u>
²<u>https://github.com/senmao/eodc-examples/blob/main/tutorials/AI4SAR_access_data.ipynb</u>

Close Add

Project objectives Develop an advanced preprocessing of SAR data based on Al to reduce the speckle effect. Concept utilisation to filter the complex-value SAR data for advanced interferometry. Develop sub-pixel SAR-to-

optical matching techniques based on AI resp. ML methods.

To **demonstrate** the usability and to validate the products via UCs:

UC validators

1. Data Cube ingestion to eodc facilitate distribution of the data.

2. Forest monitoring to JOANNEUM WWW demonstrate the novel SAR pre-processing.

JOANNEUM RESEARCH

3. **Deformation monitoring** based on advanced phase and coherence estimation.

4. GCP transfer from SAR to optical images.

Forest Monitoring Workflow

O AIRBUS DEFENCE & SPACE

Set-up	 Specification of main processing parameters Once per orbit / stack
Prepare	 Import, AI based speckle filtering, coregistration preparation Dynamic update per scene
Coreg	 Coregistration, radiometric calibration Dynamic update per scene
Stack	 Stacking and modified time series analysis "Full" reprocessing in certain intervals
Chang e	 Modified change detection "Full" reprocessing in certain intervals

Test Site Germany

- Sentinel-1 data:
 - Ascending orbit 117
 - GRD: 07/2017-09/2018 (25 acquisitions without winter season)
- Reference data:
 - COPDEM 30m
 - Copernicus HRL forest mask 2015 and 2018
 - Forest damage assessment
 - Damage assessment from two flight campaigns

eodc Earth Observation Sentinel-1 VV – AI Speckle Filter – Test AOI

Reference forest damage mask

Detected S1 changes VV – AI filter in forest mask 2015

Confusion Matrix VV Polarization

Without Speckle Filter					With Speckle Filter					
<u>Accuracy</u> = 94,30% 21417126			Sentinel-1 VV No Change		<u>Accuracy</u> = 95,01%			Sentine No	el-1 VV Change	
			Change					Change		
			20339268	1077858			21417126	20974697	442429	
	Airborne surveys	No Change	21066877	20092400	974477	Airborne	No Change	21066877	20707216	359661
		Change	350249	246868	103381	surveys	Change	350249	267481	82768

Project objectives Develop an advanced preprocessing of SAR data based on Al to reduce the speckle effect. Concept utilisation to filter the complex-value SAR data for advanced interferometry. Develop sub-pixel SAR-tooptical matching techniques based on AI resp. ML methods.

To **demonstrate** the usability and to **validate** the products via UCs:

UC validators

eodc 1. **Data Cube ingestion** to facilitate distribution of the data.

2. Forest monitoring todemonstrate the novel SAR pre-processing.

3. **Deformation monitoring** based on advanced phase and coherence estimation.

CEFENCE & SPACE 4. **GCP transfer** from SAR to optical images.

SuLaMoSA Workflow

Scattering Mechanism (Resolution Cell)

Point scatterer

Distributed scatterer

Boxcar (single look)

Al Sibling (single look)

Test Site Austria

- Sentinel-1 data:
 - Ascending orbit 15
 - SLC: 03/2017-09/2022 (304 acquisitions)
- Reference data:
 - DEM
 - EGMS

EGMS L3

SuLaMoSA

SuLaMoSA + AI4SAR

Project objectives Develop an advanced pre-processing of SAR data based on AI to reduce the speckle effect. Concept utilisation to filter the

complex-value SAR data for advanced interferometry.

Develop sub-pixel SAR-tooptical matching techniques based on AI resp. ML methods. To **demonstrate** the usability and to **validate** the products via UCs:

UC validators

eodc 1. **Data Cube ingestion** to facilitate distribution of the data.

 Forest monitoring to
 demonstrate the novel SAR pre-processing.

3. **Deformation monitoring** based on advanced phase and coherence estimation.

CARBUS 4. **GCP transfer** from SAR to optical images.

Complementary Information of SAR and Optical Satellite Imagery

Deep Learning Approach

- 15 Image Pairs across 0 locations
- TerraSAR X GEC SE Staring Spotlight 0.22 m
- Pleiades Pan (0.2m) / Pleiades Neo (0.5m)
- Co-registration residual: 1.2 m

eode Earth Observation Data Centre

Thank you for your attention