How to Motivate Scientists to Get Involved in Destination Earth?

Wolfgang Wagner

Department of Geodesy and Geoinformation Technische Universität Wien

Earth Observation Data Centre for Water Resources Monitoring

Destination Earth

Develop a digital model of the Earth to monitor and simulate <u>natural and human</u> activity

http://www.esa.int/ESA_Multimedia/Images/2020/09/Register_for_ESA_s_Ph-Week_event

European Commission

Bringing the Expertise together

 Involvement of a wide scientific community essential to cover all expertise necessary to create highprecision digital twins

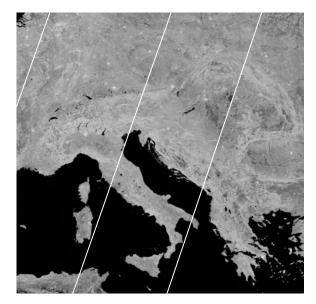
"At the heart of DestinE will be a federated cloud-based modelling and simulation platform. This platform will provide access to data, advanced computing infrastructure including HPC, software, AI applications and analytics. It will integrate digital twins — digital replicas of various aspects of the Earth's system The platform will enable application development and the integration of users' own data." https://digital-strategy.ec.europa.eu/en/policies/destination-earth

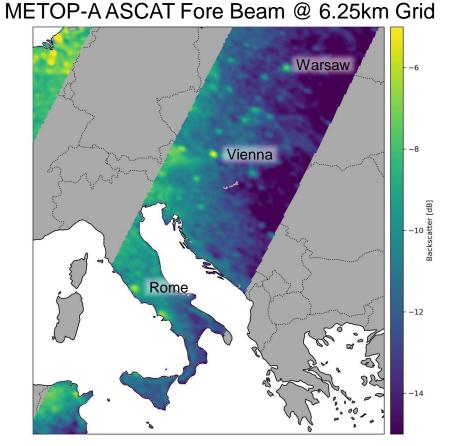
- How to ensure that scientists embrace this concept?
 - There must be reasons that go beyond the incentive stemming from the involvement in DestineE projects
- Learning from the experiences with the
 - ESA Thematic Exploitation Platforms (TEPs)
 - Copernicus Data and Information Access Services (DIAS) platforms

H SAF Soil Moisture Services: First Steps onto the EUMETSAT Cloud

- Within the H SAF, EUMETSAT, ZAMG, ECMWF and TU Wien provide several soil moisture data products derived from METOP ASCAT data
 - All four organisations use their own hardware ⇒ distributed data processing system
- It would make sense to keep the ASCAT data at one place
 - Avoid sending data back and forth
 - Co-working on one platform

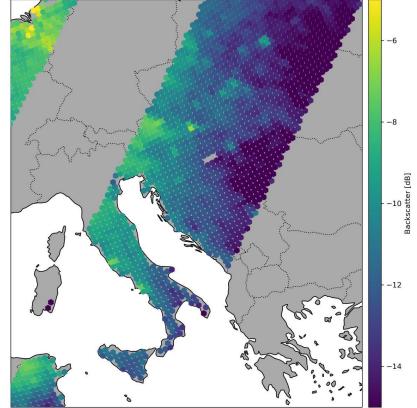
EUMETSAT Cloud


- Why moving onto the EUMETSAT Cloud is not frightening us (TU Wien)
 - More than being an agency, EUMETSAT has acted as a trusted partner since many years
 - No fears that know-how of TU Wien is handed over to another organisation without our consent
 - EUMETSAT has the mission & expertise to work towards the same goals
 - Even in case that the EUMETSAT Cloud programme would be stopped, we are confident that our work (data and software) can be saved without unduly costs



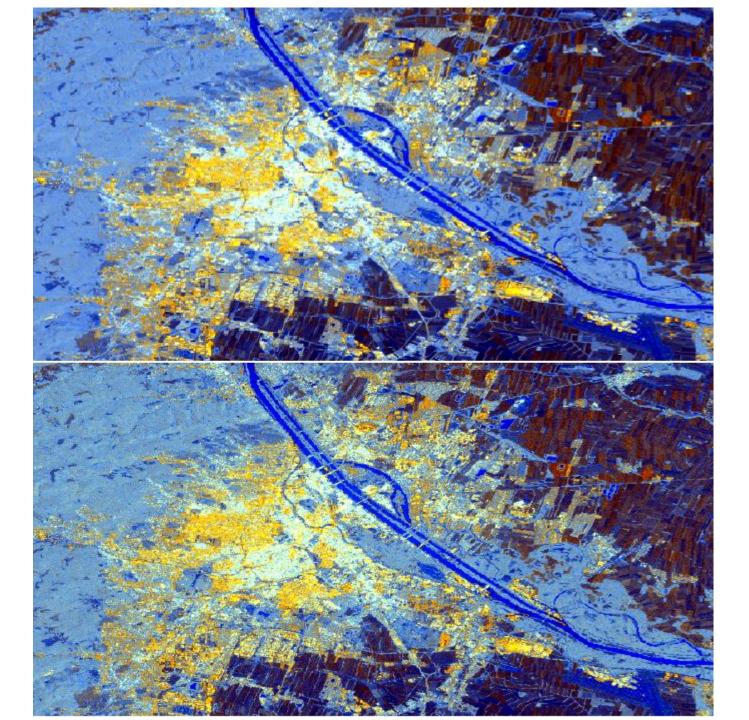
First Tests at EUMETSAT Cloud by TU Wien

 Processing of full-resolution ASCAT data to produce a new 6.25 km gridded backscatter data product


Sentinel-1 Mean Backscatter

ASCAT Images by Sebastian Hahn

METOP-A ASCAT Fore Beam @ 25km Grid


Worldwide Sentinel-1 Data Processing @ EODC

- Instead of taking the easy way on the Google Earth Engine, TU Wien has taken the more difficult route to co-found the EODC to realise a public-private collaboration
 - Create a governance structure where partners and users can have a voice in the decision making
 - Reach a critical size to be able to make
 - own choices on how data are processed and analysed (e.g. choice of grid, pre-processing, data cube system, etc.)
 - visible contributions to European programmes
 - operational data streams compliant with European laws and regulations
- Copernicus Services
 - Land Monitoring Services: soil moisture
 - Emergency Management Service: flood monitoring

Sentinel-1 Data Analysis at GEE and EODC

 Sentinel-1 polarisation composite (R=Mean of VV, G=Mean of VH and B=VH/VV) showing Vienna in March 2017, created at the Google Earth Engine (top) and EODC back-end (bottom) using openEO

open API to connect R, Python, JavaScript and other clients to big Earth observation cloud back-ends

Wagner et al. (2021) A Sentinel-1 data cube for global land monitoring applications, Proceedings BiDS'21 Conference, 49-52.

Final Thoughts

- Making one's own scientific work dependent on an external organisation is risky
 - "Will I and my team be able to access the data and compute resources needed not just now, but also after the end of this project?"
 - "Can I also count on continuity as regards the strategy, governance, costs etc.?
 - "Can I trust that nobody takes advantage of our work without our explicit consent?"
 - "Is working on the external platform at least as efficient as on one's own infrastructure?"
- Potential benefits (for scientists) that may outweigh the risks and extra work needed to make the transition
 - Do things that would not be possible on one's own infrastructure
 - Be part of a larger scientific community
 - Achieve more scientific impact
 - Improve changes for continued funding

Acknowledgements

ESA: Gamma2Cloud / Copernicus: Global Land Service & Emergency Management Service / H2020: openEO, C-SCALE / EUMETSAT: H SAF / BMBFW: GEOCLIM

